Random Heteropolymer Enables Protein Function in Foreign Environments

B. Panganiban, B. Qiao, T. Jiang, C. DelRe, M. M. Obadia, T. Dac Nguyen, A. A. A. Smith, A. Hall, I. Sit, M. G. Crosby, P. B. Dennis, E. Drockenmuller, M. Olvera de la Cruz & T. Xu

The retention of enzymes’ activity in non-biological conditions is pivotal to generate biomimetic materials. Random heteropolymer was thus designed to preserve enzymes’ native structures and activities in organic solutions. Multiscale simulations at all-atom and coarse-grained resolutions showed that

- the local heterogeneity at protein surface plays the determinant role in stabilizing protein-polymer complex (core-shell structure) in oil;
- optimal polymer composition for protein encapsulation exists.

Figure. All-atom (A-B) and coarse-grained (C-D) simulations results.

Funding: DOE Award No. DE-FG02-08ER46539 and the Sherman Fairchild foundation